凯利公式是如何推导出来的_凯利公式最简单的理解方法
大家好,今天为各位带来凯利公式是如何推导出来的的相关分享,同时也会提及凯利公式最简单的理解方法的一些知识点,希望对您有所帮助,接下来我们就一起进入正文吧!
本文目录
凯利公式(Kelly Criterion)在金融投资领域是一个非常重要的概念,它能够帮助投资者确定最佳的资本配置比例,以最大化长期回报。今天,我们就来聊聊这个神秘的公式,看看它是如何被推导出来的。
一、凯利公式的起源
凯利公式最早由美国数学家约翰·凯利(John L. Kelly)在20世纪50年代提出。当时,他正在为贝尔实验室工作,并研究如何优化赌场游戏中的投注策略。后来,这个公式被引入到金融投资领域,并成为许多投资者制定投资策略的重要依据。
二、凯利公式的推导
1. 基本假设
在推导凯利公式之前,我们需要先做一些基本假设:
- 投资者每次投注的资金比例固定,即使用相同比例的资金进行投资。
- 投资结果只有两种可能:盈利或亏损。
- 盈利和亏损的概率是已知的。
- 投资的盈利或亏损金额与投注金额成正比。
2. 公式推导
根据上述假设,我们可以推导出以下公式:
设:
- ""( p "") 为盈利的概率。
- ""( q "") 为亏损的概率,即 ""( q = 1 - p "")。
- ""( b "") 为每单位投注盈利的金额。
- ""( c "") 为每单位投注亏损的金额,即 ""( c = -b "")。
- ""( F "") 为初始资本。
- ""( x "") 为每次投注的资金比例。
则:
盈利期望值:
""( E = p ""cdot b ""cdot x ""cdot F - q ""cdot c ""cdot x ""cdot F "")
化简得:
""( E = (b - c) ""cdot p ""cdot x ""cdot F "")
亏损期望值:
""( D = -c ""cdot q ""cdot x ""cdot F "")
化简得:
""( D = -c ""cdot (1 - p) ""cdot x ""cdot F "")
凯利公式:
为了使投资收益最大化,我们需要找到最佳的资金比例 ""( x "")。根据凯利公式,最佳资金比例为:
""( x = ""frac{p ""cdot b - q ""cdot c}{b - c} "")
代入 ""( b = 1 ""),""( c = -1 ""),得:
""( x = ""frac{p - q}{2} "")
这就是凯利公式的最终形式。
三、凯利公式的应用
凯利公式在金融投资领域有着广泛的应用,以下是一些常见场景:
- 股票投资:投资者可以使用凯利公式确定每次买入股票的资金比例,以最大化长期回报。
- 期货交易:期货交易者可以使用凯利公式确定每次开仓的资金比例,以降低风险。
- 外汇交易:外汇交易者可以使用凯利公式确定每次交易的资金比例,以提高盈利能力。
四、总结
凯利公式是一个强大的投资工具,它可以帮助投资者找到最佳的资金配置比例,以最大化长期回报。通过理解凯利公式的推导过程,我们可以更好地掌握这个工具,并在实际投资中运用它。
表格:
变量 | 定义 |
---|---|
p | 盈利概率 |
q | 亏损概率 |
b | 每单位投注盈利的金额 |
c | 每单位投注亏损的金额 |
F | 初始资本 |
x | 每次投注的资金比例 |
希望这篇文章能帮助大家更好地理解凯利公式。如果你有任何疑问,欢迎在评论区留言。
凯利公式具体是怎么推导出来的
凯利公式的推导,从基本概率论出发。设想一个简单的硬币抛掷游戏,硬币正面和反面出现概率均为0.5。若每次投入相同金额,且资金链不中断,投掷次数增加后,期望总资产稳定于初始值。
用数学语言描述,设初始资产为a,每次投掷后资产变为f(a),赌赢概率为p,赌输概率为1-p。对于所有n次投掷,资产变化可表达为:f(a)= a* p^n*(1-p)^(n-1)。进一步,总资产为资产乘以下注比例n次方,最终得到资产总公式。
当赌赢概率p>0.5时,最大化资产期望需要最大化每次下注比例。因此,每次下注应将所有资产押注,使资产随投掷次数几何级数增长。反之,若p<0.5,为最大化资产,每次应不押注,确保总资产不变。
在实际投资时,通常采用固定比例投注策略。设比例为b,每次投注后资产变化为原资产乘以(1+b)或(1-b)。n次投注后,资产变为原资产乘以(1+b)^n或(1-b)^n。当p>0.5时,最大化期望资产需在每次投注时将所有资金投注。若p<0.5,期望资产最大时,不进行投注。
通过导数研究,发现期望资产最大化的投注比例为b=(p-1)/ln(1/(1-p))。若p1/2,最佳投注比例为b=(p-1)/ln(1/(1-p)),此时资产期望增长。存在临界点,使得资产期望达到最大。
在实际投资中,需考虑赔率。赢钱率表示赢得资产的倍数,输钱率表示损失的资产比例。投注比例应考虑赔率调整,使期望资产最大化。
此外,投资还存在损失率。当同时考虑赢钱率和损失率时,凯利公式形式发生变化,需调整投注比例以最大化期望资产。
本文概述了凯利公式的推导过程,涉及概率论基础、固定比例投注、考虑赔率与损失率的情况。希望有兴趣的读者深入研究,以更全面理解凯利公式的应用。
凯利公式的推导过程
探讨凯利公式的推导过程,我们首先设定资本金为1,成功概率为p,收益为+W;失败概率为q,收益为-L。目的是求解最优投入比例x,以在累积n次后使总资产收益最大化。
构建期望收益率函数为f(x)=(1+W*x)^p*(1-L*x)^q。接着,通过求解目标函数的极值,令f’(x)=0。经过一系列计算,我们得到最优投入比例x=(p*W-q*L)/(W*L),若将赔率b定义为W/L,则x=(p-q/b)/L。
特别地,当L=1时,即“一次投资的最大亏损是被清零”,x=p-q/b即为凯利公式。
举例说明,若投资项目有70%概率翻倍,30%概率清零,W=1,L=1,b=1;p=0.7,q=0.3。最优策略投入比例是x=0.7-0.3/1=0.4,若有100万元资本金,应投入40万元以达到最优。此时期望收益率为f(x)=(1+1*0.4)^0.7*(1-1*0.4)^0.3=1.086。
实际上,凯利公式的期望收益率往往低于直观预期,即使表面上有高成功率和高收益率。一般而言,考虑综合风险后,投资实体项目期望收益率在+8.6%左右,与金融股票市场年均+8%的收益率相当。
目标函数f(x)的推导基于末态资产和递推关系。通过合并胜利与失败的局数,得到an=a0*(1+W*x)^S*(1-L*x)^F。进一步定义平均每次收益率为r,期望收益率函数f(x)=(1+r)^(1/n),从而得出f(x)=(1+W*x)^p*(1-L*x)^q。
对于横向投资的最优策略,当10个项目拥有相同的胜率与赔率时,显然每个项目都是平等的盈利机会。因此,最佳策略是平均分配资本,即每个项目投入相同资金。在本例中,100万元投资到10个项目上,每个项目10万元,总资本期望值为140万元,这低于纵向策略的总收益。
通过比较横向与纵向事例的收益,我们可以看出两者之间存在不对称性。横向策略在每个项目上的分凯利公式是如何推导出来的配是等权的,而纵向策略则集中在少数高收益项目上。这说明在不同投资策略下,收益表现可能会有很大差异。
凯利公式教你如何用正确的方法投资
凯利公式志在解决的问题
假设赌局1:你赢的概率是60%,输的概率是40%。赢时的净收益率是100%,输时的亏损率也是100%。也即,如果赢,那么你每赌1元可以赢得1元,如果输,则每赌1元将会输掉1元。赌局可以进行无限次,每次下的赌注由你自己任意定。问题:假设你的初始资金是100元,那么怎么样下注,即每次下注金额占本金的百分之多少,才能使得长期收益最大?
对于这个赌局,每次下注的期望收益是下注金额的60%*1-40%*1=20%,期望收益为正。也就是说这是一个对赌客占优的赌局,而且占得优势非常大。
那么我们应该怎么样下注呢?
如果不进行严密的思考,粗略的想象一下,我们会觉得既然我每次赌的期望收益是20%,那么为了实现长期的最大收益,我应该在每次赌博中尽量放入更多比例的本金。这个比例的最大值是100%。
但是显然每一局赌博都放入100%的本金是不合理的,因为一旦哪一次赌博赌输了,那么所有的本金就会全部输光,再也不能参加下一局,只能黯然离场。而从长期来看,赌输一次这个事件必然发生,所以说长期来看必定破产。
所以这里就得出了一个结论:只要一个赌局存在一下子把本金全部输光的可能,哪怕这个可能非常的小,那么就永远不能满仓。因为长期来看,小概率事件必然发生,而且在现实生活中,小概率事件发生的实际概率要远远的大于它的理论概率。这就是金融学中的肥尾效应。
继续回到赌局1。
既然每次下注100%是不合理的,那么99%怎么样。如果每次下注99%,不但可以保证永远不会破产,而且运气好的话也许能实现很大的收益。
实际情况是不是这个样子呢?
我们先不从理论上来分析这个问题,我们可以来做个实验。我们模拟这个赌局,并且每次下注99%,看看结果会怎么样。
这个模拟实验非常的简单,用excel就能完成。请看下图:
如上图,第一列表示局数。第二列为胜负,excel会按照60%的概率产生1,即60%的概率净收益率为1,40%的概率产生-1,即40%的概率净收益为-1。第三列为每局结束时赌客所有的资金。这个实验每次下注仓位是99%,初始本金是100,分别用黄色和绿色标出。
大家从图中可以看出,在进行了10局之后, 10局中赢的局数为8,比60%的概率还要大,仅仅输了两次。但即使是这样,最后的资金也只剩下了2.46元,基本上算是输光了。
当我把实验次数加大,变成1000次、2000次、3000次……的时候,结果可想而知了,到最后手中的资金基本上是趋向于0。
既然99%也不行,那么我们再拿其他几个比例来试试看,看下图:
从图中可以看出,当把仓位逐渐降低,从99%,变成90%,80%,70%,60%的时候,同样10局的结果就完全不一样了。从图中似乎可以看出随着仓位逐渐的变小,在10局之后的资金是逐渐变大的。
大家看到这里,就会渐渐的发现这个赌局的问题并不是那么简单的。就算是赌客占优如此之大的赌局,也不是随随便便都能赢钱的。
那么到底怎么下注才能使得长期收益最大呢?
是否就像上图所显示的那样,比例越小越好呢?应该不是,因为当比例变凯利公式是如何推导出来的成0的时候显然也不能赚钱。
那么这个最优的比例到底是多少呢?
这就是著名的凯利公式所要解决的问题!
凯利公式介绍
其中凯利公式是如何推导出来的f为最优的下注比例。p为赢的概率。rw是赢时的净收益率,例如在赌局1中rw=1。rl是输时的净损失率,例如在赌局1中rl=1。注意此处rl>0。
根据凯利公式,可以计算出在赌局1中的最有利的下注比例是20%。
我们可以进行一下实验,加深对这个结论的理解。
如图,我们分别将仓位设定为10%,15%,20%,30%,40%。他们对应的列数分别是D、E、F、G、H。
当我把实验次数变成3000次的时候,如下图:
当我把实验次数变成5000次的时候,如下图:
大家从两幅图中可以看到F列对应的结果最大,和其它列相比压根就不是一个数量级的。而F列对应的仓位比例正是20%。
大家看到凯利公式的威力了吧。在上面的实验中,如果你不幸将比例选择为40%,也就是对应H列,那么在5000局赌博之后,你的本金虽然从100变成了22799985.75,收益巨大。但是和20%比例的结果相比,那真是相当于没赚钱。
这就是知识的力量!
凯利公式理解
凯利公式的数学推导及其复杂,需要非常高深的数学知识,所以在这里讨论也没有什么意义。哎,说白了其实就是我也看不大懂。在这里我将通过一些实验,加深大家对凯利公式主观上的理解。
我们再来看一个赌局。赌局2:你输和赢的概率分别是50%,例如抛硬币。赢的时候净收益率为1,即rw=1,输的时候净损失率为0.5,即rl=0.5。也就是说当你每赌一元钱,赢的时候你能再赢1元,输的时候你只要付出去5毛。
容易看出赌局2的期望收益是0.25,又是一个赌客存在极大优势的赌局。
根据凯利公式,我们可以得到每局最佳的下注比例为:
也就是说每次把一半的钱拿去下注,长期来看可以得到最大的收益。
下面我要根据实验得出平均增长率r的概念。首先来看实验2.1,如下两张图:
这两张图都是模拟赌局2做的实验,在第二列的胜负列中,实验会50%的概率产生1,表示盈利100%。50%的概率产生-0.5,表示亏损50%。第三第四列分别是在仓位为100%和50%下每次赌局之后所拥有的资金。
仔细对比两张图可以发现结论一,亦即在经过相同次的局数之后,最后的结果只与在这些局数中赢的局数的数量和输的局数的数量有关,而与在这些局数中赢的局和输的局的顺序无关。例如在上两幅图中,同样进行了4局,同样每幅图中赢了两局输了两局,但是第一张图的输赢顺序是赢输输赢,第二张图的输赢顺序是输赢赢输。它们最终的结果都是一样的。
当然这个结论非常容易证明(乘法交换律,小学生就会),这里就不证明了,上面举的两个例子足够大家很好的理解。
那么既然最终的结果和输赢的顺序无关,那么我们假设赌局2如实验2.2一样进行下去,看下图:
我们假设赌局的胜负是交替进行的,由于结论一,从长期来看这对结果资金没有任何影响。
在自己观察图片之前我们先做一个定义。假设将某几局赌局视为一个整体,这个整体中各种结果出现的频率正好等于其概率,并且这个整体的局数是所有满足条件整体当中局数最小的,那么我们称这个整体为一组赌局。例如在上图的实验中,一组赌局就代表着进行两局赌局,其中赢一次输一次。
仔细观察上图中蓝色标记的数字,它们是一组赌局的结尾。你会发现这些数字是保持着稳定的增长的。当仓位是100%时,蓝色标记数字的增长率是0%,即一组赌局之后本金的增长率为0%。这也解释了当每次都满仓下注的时候,在赌局2中长期来看是无法赚钱的。当仓位是50%(即凯利公式得出的最佳比例)时,蓝色标记数字的增长率是12.5%,即一组赌局之后本金的增长率为12.5%。
这是一个普遍的规律,每组赌局之后的增长率与仓位有关。且每组赌局之后的增长率越大,那么长期来看最终的收益也就越多。
根据每组赌局的增长率可以计算出每个赌局的平均增长率g。在上面的图中,每组赌局之中包含两个赌局,那么每个赌局的平均增长率
其实这个r是可以通过公式算出来的。
从长期来看,想要让资本得到最大的增长,其实只要让r最大,也即让g最大化。而最佳下注比例f其实也是通过求解max(g)的出来的。
凯利公式其他结论——关于风险
凯利传奇(本节内容来自互联网)
凯利公式最初为 AT&T贝尔实验室物理学家约翰·拉里·凯利根据他的同僚克劳德·艾凯利公式是如何推导出来的尔伍德·夏农于长途电话线杂讯上的研究所建立。凯利解决了夏农的资讯理论要如何应用于一名拥有内线消息的赌徒在赌马时的问题。赌徒希望决定最佳的赌注金额,而他的内线消息不需完美(无杂讯),即可让他拥有有用的优势。凯利的公式随后被夏农的另一名同僚爱德华·索普应用于二十一点和股票市场中。
索普利用工作之余,通过数个月的艰苦演算,写了一篇题为《“二十一点”优选策略》的数学论文。他利用自己的知识,一夜之间“奇袭”了内华达雷诺市所有的赌场,并成功的从二十一点赌桌上赢得了上万美元。他还是美国华尔街量化交易对冲基金的鼻祖,70年代首创第一个量化交易对冲基金。1962年出版了他的专著《打败庄家》,成为金融学的经典著作之一。
运用展望
如何利用凯利公式在现实生活中赚钱?那就是要去创造满足凯利公式运用条件的“赌局”。在我看来,这个“赌局”一定是来自金融市场。
近期我一直在做交易系统的研究,对于一个优秀的交易系统来说什么是最重要的?一个期望收益为正的买卖规则占到重要性的10%,而一个好的资金控制方法占到了重要性的40%,剩下的50%是操控人的心理控制力。
而凯利公式正是帮助我进行资金仓位控制的利器。
比如说之前我研究出的一个股票交易系统,该系统每周进行一次交易,每周交易成功的概率是0.8,失败的概率是0.2。当成功的时候可以赚取3%(扣掉佣金,印花税),每次失败时亏损5%。在不知道凯利公式之前,我都是盲目的满仓交易,也不知道我这个仓位设定的对不对,心理很虚。在运用凯利公式之后,计算的最佳的仓位应该是9.33,就是说如果借款利率是0的话想要得到最快的资金增长速度就要使用杠杆交易,通过公式计算得到每次交易的平均增长率r约等于7.44%,而满仓交易的平均资金增长率为r约等于 1.35(其实也就是期望收益)。通过实验模拟之后也发现确实杠杆交易比满仓交易资金增长的速度要快的多。这也让我更好的理解了为什么很多量化投资基金公司需要使用杠杆交易。
当然凯利公式在实际的运用中不可能这么的简单,还有很多的困难需要克服。比如说杠杆交易凯利公式是如何推导出来的所需要的资金成本,比如说现实中资金并不是无限可分的,比如说在金融市场并不像上文提到的简单的赌局那么简单。
但是不管怎么样,凯利公式为我们指明了前进的道路。
关于凯利公式是如何推导出来的的内容今天就讲到这里,希望能帮助大家更好地掌握,同时也欢迎探讨凯利公式最简单的理解方法的实践经验。